4
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Learn2Extend: Extending Sequences by Retaining their Statistical Properties with Mixture Models

ORCID Icon, ORCID Icon & ORCID Icon
Published online: 24 Jun 2024
 

Abstract

This paper addresses the challenge of extending general finite sequences of real numbers within a subinterval of the real line, maintaining their inherent statistical properties by employing machine learning. Our focus lies on preserving the gap distribution and pair correlation function of these point sets. Leveraging advancements in deep learning applied to point processes, this paper explores the use of an auto-regressive Sequence Extension Mixture Model (SEMM) for extending finite sequences, by estimating directly the conditional density, instead of the intensity function. We perform comparative experiments on multiple types of point processes, including Poisson, locally attractive, and locally repelling sequences, and we perform a case study on the prediction of Riemann ζ function zeroes. The results indicate that the proposed mixture model outperforms traditional neural network architectures in sequence extension with the retention of statistical properties. Given this motivation, we showcase the capabilities of a mixture model to extend sequences, maintaining specific statistical properties, i.e. the gap distribution, and pair correlation indicators.

Acknowledgments

We would like to thank Dr. Michael Keckeisen, TWT, for the valuable discussions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 360.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.