179
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Reactive Surfactant in the Emulsion Copolymerization of Methyl Methacrylate and Octyl Acrylate

, , &
Pages 242-247 | Received 01 Jul 2007, Accepted 01 Sep 2007, Published online: 30 Jan 2008
 

The emulsion copolymerization of methyl methacrylate and octyl acrylate was studied using a reactive surfactant ammonium sulfate allyloxy nonylphenoxy poly(ethyleneoxy) (10) ether (DNS‐86), and a conventional surfactant sodium dodecylbenzene sulfonate (DBS) with a similar structure as a comparison sample. A series of latex samples have been prepared with two kinds of surfactants, and their properties have been characterized and compared. 1H‐NMR proves that the reactive surfactant has been incorporated into the resulting copolymers. The atomic force microscopy (AFM) proves that the reactive surfactant DNS‐86 migrate to the surface of the latex film to a much less degree than the conventional surfactant DBS. Transmission electron microscopy (TEM) demonstrates that there are some differences in the particle morphologies. The stability and water‐resistance of the latex films prepared by reactive surfactant DNS‐86 are better than those prepared by the conventional surfactant DBS.

5 Acknowledgements

We thank Guangzhou Shuangjian Co., Ltd. for financial support and providing the reactive surfactants of this investigation. We also thank the financial support of the project 2006‐KL‐008.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.