461
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Water Sorption Properties and Antimicrobial Action of Zinc Oxide Nanoparticles-Loaded Cellulose Acetate Films

, &
Pages 309-317 | Received 01 Sep 2009, Accepted 01 Sep 2009, Published online: 12 Feb 2010
 

Abstract

In this work, ZnO nanoparticles loaded cellulose acetate (ZOLCA) films have been prepared and characterized by XRD, SPR and SEM analysis. The moisture permeation properties of the films have been investigated. The GAB isotherm model has been found to fit well on the moisture uptake data obtained at different temperatures. The monolayer sorption capacity χm was found to decrease from 0.059 to 0.0079 g water/g dry film with increase in temperature from 20 to 37°C. The isosteric heat of sorption, when studied in the lower water activity range of 0.04 to 0.10, was evaluated to be 46.55 to 87.29 kJ/mol. The water vapor permeability across the ZOLCA films was found to increase with temperature and activation energy of moisture sorption process was found to be 48.57 kJ/mol. These films have shown excellent antibacterial action against model bacteria E-Coli when investigated by qualitative and quantitative methods. Films exhibit great potential to be used as edible films to protect food stuff against microbial infections.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.