675
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

Self-healing Mechanism and Mechanical Behavior of Hydrophobic Association Hydrogels with High Mechanical Strength

, , , , , & show all
Pages 335-342 | Received 01 Aug 2009, Accepted 01 Oct 2009, Published online: 12 Feb 2010
 

Abstract

Hydrophobic association hydrogels (HA-gels) were prepared through micellar copolymerizationof acrylamide (AM) and a small amount of octyl phenol polyethoxy ether acrylate (OP-4-AC) in an aqueous solution containing sodium dodecyl sulfate (SDS) at 50°C. The resulting HA-gels exhibited excellent mechanical properties and transparency. However, the most striking properties were that HA-gels possessed the capability of self-healing. The mechanical properties of HA-gels were investigated by uniaxial stretching. The results showed that the mechanical properties of HA-gels could be varied greatly by changing OP-4-AC content in the range of OP-4-AC used. On the basis of the rubber elastic theory and using uniaxial stretching data, the effective network chain density and the average distance between the cross-linking points were calculated for HA-gels. For tensile measurements of altering crosshead speed, the modulus of HA-gels increased sharply with increasing crosshead speed. The stress-relaxation behavior of HA-gels consisted of two stages. Similar to rubbery, HA-gels exhibited obvious thermoelastic behavior and also showed a good rubberlike elastic property.

Notes

a Concentration of KPS was 0.01g/mL.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.