383
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Star-PDMAEMA-β-CD-Stabilized Colloidal Gold Nanoparticles: Synthesis, Characterization and pH-Controlled Assembly

, , &
Pages 291-298 | Received 01 Sep 2010, Accepted 01 Oct 2010, Published online: 03 Mar 2011
 

Abstract

Colloidal gold nanoparticles were prepared through in situ reduction in the presence of water-soluble star homopolymer with β-cyclodextrin core and poly[2-(dimethylamino) ethyl methacrylate] arms (star PDMAEMA-β-CD) at ambient temperature. In this process, star PDMAEMA-β-CD acted as both reducing agent and stabilizing agent for gold nanoparticles. More importantly, the optical properties and the morphology of star-PDMAEMA-β-CD-stabilized colloidal gold nanoparticles were sensitive to the solution pH due to structural changes of the polymer. Different assemblies can be formed by tuning the pH of the medium. Fourier transform infrared (FT-IR), UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), dynamic laser light scattering (DLS) and X-ray diffraction (XRD) were used to characterize the synthetic gold nanoparticles and the pH-controlled assembly of gold nanoparticles.

Acknowledgements

The authors are grateful for support of the National Natural Science Foundation of China (20771071), the Program for New Century Excellent Talents in University of China (NCET-07-0528) and the Fundamental Research Funds for the Central Universities (GK200902001).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.