138
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Characterization of High Performance Poly(amide-imide)s based on a New Diimide-diacide and Various Diamines

, &
Pages 30-40 | Received 01 Jun 2011, Accepted 01 Jul 2011, Published online: 12 Dec 2011
 

Abstract

A new diimide-diacid, (4-(4-(2,6-diphenylpyridin-4yl)phenoxy)phenyl)-1,3-bis(trimellitimidobenzene) (PPMIB), was synthesized from the condensation reaction of a new diamine, (4-(4-(2,6-diphenylpyridin-4yl)phenoxy)phenyl)-3,5-diaminobezamide (PPDA), and trimellitic anhydride carboxylic acid (TMAA) in glacial acetic acid. The diimide-diacid (PPMIB) was characterized by FT-IR, 1H-NMR and elemental analysis. A series of novel aromatic poly(amide-imide)s (PAIs) was synthesized by using direct polycondensation of PPMIB with various diamines in NMP in the presence of triphenylposphite and pyridine as condensing agents. The resulting PAIs were amorphous, readily soluble in many polar aprotic solvents and showed inherent viscosities of 0.35–0.50 dL/g. According to thermal analysis, these polymers exhibited glass transition temperatures (Tgs) in the range of 202–280°C and temperature of 10% weight loss (T10) varied from 400 to 545°C in N2. These polymers in NMP solution exhibited strong UV-Vis absorption maxima at 320°C nm and their fluorescence emission peaks appeared around 410–565 nm.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.