129
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Polymerization Kinetics of Polystyrene Grafting using Azo-groups Bounded SiO2 as an Initiator

, , , &
Pages 729-735 | Received 01 Mar 2012, Accepted 01 Apr 2012, Published online: 06 Aug 2012
 

Abstract

This work presents a new method for synthesis of inorganic/organic hybrid nanoparticles via the in-situ polymerization by the use of the azo-groups bounded silica nanoparticles as a radical initiator and styrene as a model vinyl-monomer. The synthesis and the structure of silica/polystyrene (SiO2/PS), and the polymerization kinetics of the styrene initiated by the azo-groups bounded SiO2 nanoparticles are studied with techniques such as FTIR, XPS, DSC, GPC, and TEM. Results show that the SiO2-g-PS nanoparticles are synthesized successfully, and the resulting hybrid nanoparticles have a core-shell structure with SiO2 in the core and the polystyrene on the outside layer. The percentage of the grafted PS on the SiO2 surface increases with the progress of the polymerization before 6 h, and the largest amount of the grafted PS reaches 33% of the silica nanoparticles.

Consequently, the size of the nanoparticles increases ca. 20 nm upon the polystyrene grafting. The molecular weight of the grafted PS increases with the polymerization, and it has reached a much large value in the first several polymerization hours while it keeps a constant value approximately in the following polymerization process. Meanwhile, the polydispersity index of the grafted PS gradually increases with the progress of the polymerization. These phenomena agree with the theory of the traditional free radical polymerization very well.

Acknowledgments

This research is supported by ‘Qing Lan’ Talent Engineering Funds by Lanzhou Jiaotong University (Grant No. QL-08-03A) and the National Natural Science Foundation of China (Grant No. 21161012).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.