182
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Increasing Solid Content in Latexes of Polyacrylamide Nanoparticles Made by Semi-continuous Inverse Heterophase Polymerization

, , , , &
Pages 596-601 | Received 01 Nov 2012, Accepted 01 Nov 2012, Published online: 22 Apr 2013
 

Abstract

The synthesis of polyacrylamide nanoparticles by semi-continuous inverse heterophase polymerization as a function of feeding rate of monomer aqueous solution is reported here. In this process, a concentrated acrylamide aqueous solution is dosed semi-continuously at various rates over an AOT-toluene solution containing the initiator. Our results indicate that particle size and the viscosimetric molar masses diminish as the dosing rate is slowed down and that smaller particles, as well as lower molar masses, are obtained compared to those produced by batch and semi-continuous microemulsion polymerizations, employing the same concentration of surfactant. Moreover, higher polymer/surfactant ratios are higher compared to those obtained in batch microemulsion polymerization and similar or slightly higher than that in semi-continuous microemulsion polymerization.

Acknowledgments

This research was supported by CONACYT (grant # CB-2007.82437). One of us (JMS) thanks CONACYT for the student grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.