241
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Syntheses and Optical Properties of Perfluorophenyl Containing Benzimidazole Derivatives: The Effect of Donor Units

, , &
Pages 510-516 | Received 01 Feb 2015, Accepted 01 Feb 2015, Published online: 27 May 2015
 

Abstract

Synthesis of two novel donor – acceptor – donor type monomers containing benzimidazole as the acceptor unit and thiophene and 3,4-ethylenedioxythiophene (EDOT) as the donor units were performed. 2-(Perfluorophenyl)-4,7-di(thiophen-2-yl)-1H-benzo[d]imidazole and 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-(perfluorophenyl)-1H-benzo[d]imidazole were synthesized successfully and polymerized electrochemically. The electrochemical and spectroelectrochemical studies of the polymers were studied. The effect of electron donating moieties on the optical properties of electrochemically polymerized polymers was investigated. Both polymers were p type dopable and possessed multi-chromic property. Optical studies demonstrated that the polymer based on EDOT unit (P2) resulted in lower band gap since EDOT is higher electron donating group than thiophene.

Acknowledgements

The authors thank Cem Ozcan for the preparation of the graphical abstract and Seza Goker for the interpretation of NMR spectra. We thank Seda Comez for colorimetry studies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.