139
Views
3
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of functional photoactive organic-inorganic block copolymers of poly(methylphenylsilane) and disperse red 1 methacrylate and study of their optical and photophysical properties

&
Pages 418-425 | Received 01 May 2016, Accepted 01 Nov 2016, Published online: 27 Apr 2017
 

ABSTRACT

Functional photoactive organic-inorganic block copolymers of poly(methylphenylsilane) (PMPS) and disperse red 1 methacrylate (DR1MA) were synthesized in a quartz tube using UV-technique. The synthesized block copolymers were characterized by FTIR, NMR, GPC and thermal analyses and studied for their optical and photoluminescence properties. The weight average and number average molecular weights of such a synthesized block copolymer are 2.47 × 103 and 2.27 × 103, respectively. The appearance of two glass transition temperatures indicated the synthesized polymers as block copolymers. The functional organic-inorganic block copolymers exhibited optical absorbance at 276 nm due to aromatic ring associated with both the blocks and at 325 nm due to σ-electron delocalization of Si-Si chain of PMPS block. Also, the optical absorbance appeared at 472 nm is due to combining the contribution of n-π* and first π-π* charge transfer electronic transition of the azobenzene chromophore of DR1MA unit. Two photoemissions were observed at 307 nm and 415 nm when such a polymer was excited at 275 nm. The photoluminescence was also observed at 415 nm when excited by 325 nm. The multi-emission spectra appeared between 510 nm to 580 nm are presumed to be due to exciton coupling between azobenzene chromophore of DR1MA and and Si-Si σ-conjugation of PMPS block. The synthesized copolymers are thermally stable up to 260°C. Such functional photoactive block copolymers may find novel optoelectronic application.

Acknowledgements

The authors gratefully acknowledge the encouragement and support of Dr. N. Eswara Prasad Director, DMSRDE, to pursue this task. Dr. D. N. Tripathi Sc-‘G’ is also acknowledged for his valuable suggestion and support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.