176
Views
3
CrossRef citations to date
0
Altmetric
Articles

Synthesis, characterization, and hydrolytic degradation of polylactide/poly(ϵ-caprolactone)/nano-silica composites

, , &
Pages 813-818 | Received 01 Feb 2017, Accepted 01 May 2017, Published online: 31 Jul 2017
 

ABSTRACT

Poly(lactic acid) (PLA)/poly(ϵ-caprolactone) (PCL)/nano-silica composite degradable films were prepared by a solvent casting method. SEM results showed that the nano-silica particles were dispersed uniformly in the PLA/PCL matrix. TGA results indicated that the thermal decomposition temperature rose with the increase of nano-silica content. The tensile strength of the composites was enhanced with the increase of nano-silica content up to 2%. The tensile strength increased with the silica content and reached its maximum (22.51 Mpa). The improvement in the water uptake ratio in the PLA/PCL/silica nanocomposites may be attributable to the presence of silica nanoparticles in the PLA/PCL matrix. After 15 weeks total processing time for the solution of alkaline and phosphate buffer, the performances of 16.23% and 3.65% for degradation.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51203125), and Key Project of Wuhan Textile University (143005).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.