87
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, characterization and application of dummy-template molecularly imprinted microspheres for 2,4-d butyl ester

, , &
Pages 931-937 | Received 01 Mar 2017, Accepted 01 Sep 2017, Published online: 24 Oct 2017
 

ABSTRACT

Dummy-template molecularly imprinted microspheres were synthesized via precipitation polymerization employing 2,4-D isooctyl ester as the template molecule instead of 2,4-D butyl ester, while methacrylic acid and divinylbenzene were used as functional monomer and cross-linker in acetonitrile or a mixture of acetonitrile and toluene. The microspheres were characterized by scanning electron microscopy, laser particle size analyzer and fourier transform infrared spectrometry. Binding capacity experiment showed that the molecularly imprinted polymers prepared in a mixture of acetonitrile and toluene had a high binding capacity. The performance of microspheres was further assessed by equilibrium binding and kinetic adsorption experiments. The results showed that the apparent maximum adsorption reached up to 1.35 mg·g−1 within 10 min. Based on the dummy-template microspheres, a molecularly imprinted solid phase extraction-gas chromatography method was developed for the selective analysis of 2,4-D butyl ester in soil samples. The mean recoveries of 2,4-D butyl ester from blank soil samples ranged from 85.9 to 99.3% with relative standard deviations of 4.5–14.3% (n = 5). The limit of detection and the limit of quantification of 2,4-D butyl ester were 0.8 μg·kg−1 and 2.3 μg·kg−1, respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.