163
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Solvent-free, microwave-assisted highly efficient, rapid and simple synthesis of biphenyl compounds by using silica based Pd(II) catalyst

Pages 280-287 | Received 01 Oct 2017, Accepted 01 Jan 2018, Published online: 17 Jan 2018
 

ABSTRACT

To maintain catalytic performance of any catalyst for a long time, the selection of support material is a very important parameter for heterogeneous catalytic systems, and this performance makes the catalyst valuable. In view of its low cost and availability, silica can be considered as a good support material for transition metal ions in the cross coupling reactions. Therefore, this study describes i) silica-gel based palladium catalyst with a long-term catalytic performance, ii) rapid, simple, economic, and green procedure which was developed for Suzuki reactions. The catalyst showed superior reusability (ten runs) and catalytic efficiency against coupling reactions under mild conditions (50°C, 5 min and air atmosphere). Moreover, the catalyst gave partially good reaction yields with aril chlorides which have poor activity in coupling reactions. In addition, an excellent turnover number (TON: 66000) and frequency (TOF: 825000) were obtained using very small catalyst loading (1.5 × 10−3 mol %). This paper concludes that silica-gel based Pd(II) catalyst and the protocol of synthesis of biaryls were suitable for coupling reactions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.