235
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Determination of some trace metals with a new synthesized polymer resin by FAAS in various tea and herbal plants samples

, , &
Pages 466-473 | Received 24 Jan 2018, Accepted 25 Apr 2018, Published online: 21 May 2018
 

ABSTRACT

In this work, a new polymer resin with a functional groups capable of holding trace metals has been synthesized. The structure of polymer resin has been examined by BET-N2 method analyzer, IR spectrometer, scanning electron microscope (SEM) and elemental microanalyser. The synthesized polymer resin was used for the simultaneous separation and preconcentration of the trace metals from various tea and herbal plants samples. After extraction process, flame atomic absorption spectrometry (FAAS) was used to determine the trace metals. The analytical parameters and solid phase extraction (SPE) performance such as pH, sample volume, flow rates of sample, flow rates of eluent, concentration, volume and type of eluent and effect of interference ions, were investigated. The limits of detection (DL) of the SPE procedure for trace metals, were calculated to be (3s) in the range of 0.9−4.0 μg L−1 (n = 21) and the factors of preconcentration (PF) were obtained at 200 for Cd, Co, Cu, Fe, Ni and Zn, and at 50 for Cr, Mn and Pb ions and the relative standard deviation (RSD) at ≤ 2% (n = 11).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.