1,315
Views
35
CrossRef citations to date
0
Altmetric
Reviews

A review on environmental applications of chitosan biopolymeric hydrogel based composites

, &
Pages 747-763 | Received 20 Apr 2018, Accepted 07 Sep 2018, Published online: 15 Feb 2019
 

Abstract

Chitosan (CS) is being used for fabrication of low cost, biocompatible materials that have applicability in fields such as agriculture, biotechnology and environment. In Environmental research, one of the applications of CS based hydrogel composites are in form of biosorbents for eviction of toxic dyes, heavy metals and nutrients from effluent streams. The adsorption potential could be attributed to the reactive functional groups existing on the surface of CS. CS based materials can also be employed for oil/water separation, as a fertilizer carrier, in Microbial fuel cells as Electrolyte membrane and as Electrochemical/Biosensors for detecting and analyzing few environmental pollutants such as pesticides. The earlier review papers on the subject matter have concentrated mainly on dye and heavy metal removal without giving details of its utility in the field of electrochemistry and agriculture. Though the biopolymer holds numerous applications, it has not been discussed extensively. Thus, an attempt has been made to elucidate the current and potential applications of CS hydrogels and composites based on the efficacy it has shown in areas of removal of organic and inorganic contaminants such as dyes, heavy metals and nutrients, in agriculture, oil and water separation, Microbial Fuel cells and Electrochemical/Biosensors.

    HIGHLIGHTS

  • Chitosan based hydrogel composites could be extensively used in the field of Environment Technology.

  • The composites act as effective biosorbents for dye, heavy metal and nutrient removal because of the functional groups present on Chitosan’s surface.

  • These can also be effectively used for oil/water separation and also as a fertilizer/pesticide carrier for their slow release.

  • Chitosan based electrolytes can become a promising ecofriendly substitute for synthetic polymers in fuel cells.

  • These biopolymers have also been researched upon as electrochemical/biosensors in recent years for detecting environmental pollutants.

Graphical Abstract

Acknowledgement

The authors would like to thank Guru Gobind Singh Indraprastha University for the financial assistance provided in the form of Indraprastha Research Fellowship for carrying out the work.

Disclosure statement

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.