216
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, characterization and some physicochemical properties of polypyrrole/halloysite composites

, ORCID Icon, , ORCID Icon &
Pages 222-228 | Received 23 Nov 2018, Accepted 18 Oct 2019, Published online: 18 Nov 2019
 

Abstract

Pyrrole (Py) and halloysite (H) mixtures with different ratios were polymerized in aqueous medium with the in situ technique using ammonium persulfate (APS) as a radical initiator. Halloysite, polypyrrole (PPy) and the prepared composites were examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal analysis (TG/DTA) and nitrogen adsorption/desorption (N2-AD) techniques. According to XRD analysis, the crystal structure of the halloysite was seen to be unchanged by the composite formation, but completely transformed to metahalloysite. The SEM and TEM images showed heterogeneous distribution of the halloysite in the polymer matrix with single bundle dispersions of the nanotubes. The results indicated that the flame retardant character of the composite increased whereas adsorption capacity, surface area and nanopore volume decreased with increasing PPy content. The conductivity behavior of composites was also studied.

Graphical Abstract

Additional information

Funding

This research was supported by Ankara University Scientific Research Projects Coordination Unit (project number 17H0430010).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.