252
Views
6
CrossRef citations to date
0
Altmetric
Articles

Removal of fluoride from aqueous solution by mesoporous silica nanoparticles functionalized with chitosan derived from mushroom

, , , , &
Pages 619-627 | Received 18 Dec 2018, Accepted 29 Feb 2020, Published online: 13 May 2020
 

Abstract

In the present study, chitosan functionalized mesoporous silica nanoparticles have been synthesized. Chitosan derived from an edible mushroom, Agaricus bisporus was used during synthesis of chitosan functionalized silica nanoparticles. The functionalized silica nanoparticles were subjected to fluoride sorption using a batch method which subsequently showed removal efficiency of 95% with maximum sorption capacity, 58.8 mg/g. The characterization of nanoparticles was carried out by SEM, EDAX, XRD and FTIR analysis respectively. EDAX analysis suggested that oxygen, 51.83% and silica 37.24% was main constituent of the functionalized nanomaterials. XRD yielded characteristic diffraction pattern corresponding to the lattice planes (100), (110), (112), (120), (200) and (220) respectively. Sorption data was used to study equilibrium isotherm namely Langmuir and Freundlich model. The adsorption capacity increased with temperature while kinetics studies revealed that the adsorption process followed a pseudo-second-order rate equation. The enthalpy change (ΔH) and entropy change (ΔS) was found to be −31.36 kJmol−1 and −7.75 Jmol−1 K−1, showing endothermic and spontaneous nature of the fluoride adsorption. Data suggested that the nature of adsorption belonged to chemisorptions. The overall results suggested that the synthesized nanoparticles showed strong and specific affinity for fluoride and could be excellent adsorbents for defluoridation.

Graphical Abstract

Funding

SERB, New Delhi10.13039/501100001843 KSP would like to acknowledge the grant, SR/FTP-120/ES/2014 given by Science and Engineering Research Board (SERB) Department of Science & Technology, New Delhi, India, for conducting this research work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.