210
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Structure-property relationship of highly crosslinked rubber-iron oxide composite based on chloroprene rubber (CR) as well as on nitrile rubber (NBR); a comparative study using different models

, , &
Pages 59-68 | Received 18 Apr 2020, Accepted 13 Sep 2020, Published online: 08 Oct 2020
 

Abstract

Highly crosslinked elastomer-iron oxide composite for grinding as well as for polishing application. With the recent introduction of organic acid-based coolants in polishing applications, the designed composites should have good resistance to oils. This investigation reports the preparation and properties of high crosslinked elastomer-iron oxide composites based on Chloroprene Rubber (CR) as well as on Nitrile Rubber (NBR) as main elastomer matrix and their comparative study. In NBR system, a small amount of natural rubber (NR) was used to improve the abrasion resistance. The crosslink density (CLD) was determined from the plateau modulus in DMA using Nielsen’s model. CLD was also determined based on the equilibrium-swelling ratio by using Flory-Rehner model. The CLD at lower cure time estimated by both methods was substantially different. Nevertheless, it converges to a common value at highly crosslinked state. Highly crosslinked CR shows 500% higher modulus at high temperature when compared to the NBR system.

Highly crosslinked elastomeric composites based on Chloroprene Rubber (CR) as well as Nitrile Rubber (NBR) with high iron oxide content were prepared. This investigation gives insights into the fabrication of composites and evaluates the network structure of highly crosslinked composites. Different models were used to characterize the elastomeric network structures in the composites.

Acknowledgment

The authors gratefully acknowledge Mr. P. Siva for the technical assistance in this work.

Additional information

Funding

Natarajan is grateful to MHRD, New Delhi for the fellowship and to Saint-Gobain Research India, Chennai for an internship opportunity.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.