341
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of dendronized PAMAM grafted ROMP polymers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 282-296 | Received 27 Dec 2022, Accepted 21 Mar 2023, Published online: 03 Apr 2023
 

Abstract

Oxanorbornene cored 0.5, 1.5 and 2.5 generation ester terminated PAMAM dendronized monomers with 2 and 6 carbon-containing alkyl spacer in the middle of oxanorbornene core and dendronized branching were synthesized. Monomers were polymerized through the ring-opening metathesis polymerization (ROMP) technique by using 2nd and 3rd generation Grubbs catalysts to get dendronized ROMP polymers. It was found that Grubbs 3rd generation catalyst works well for 0.5 generation dendronized ROMP polymer whereas Grubbs 2nd generation catalyst works for the higher generation. We also found the linker effect during polymerization as six-carbon linker monomers polymerize with high yield along with higher generation. Finally, dendronized ROMP-based PAMAM encapsulated zero valent Cu nanoparticle was synthesized by using a reducing agent, NaBH4. The catalytic activity of this nanoparticle was further investigated from the reduction of 4-nitrophenol to 4-aminophenol.

Graphical Abstract

Additional information

Funding

Financial support by the Turkish Govt. Scholarship (No. 13BD110201), is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.