70
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Designed ultrafine polymer-coated manganese-cobalt ferrite nanoparticles loaded with anticancer drug: efficacy enhancement through host:guest complexation on the polymer surface

, , , , , , & show all
Pages 580-590 | Received 28 Mar 2023, Accepted 05 Jul 2023, Published online: 21 Jul 2023
 

Abstract

Magnetic nanomaterials of different compositions have been examined, focusing on the magnetic field-directed transport of drugs. The size, shape, surface modification and composition variations make every magnetic nanostructure a unique nanocarrier. In this work, we carry out a hydrothermal synthesis of novel manganese-cobalt co-incorporated magnetic ferrite nanoparticles. The particles are characterized using x-ray diffraction, transmission electron microscopy, thermogravimetry and x-ray photoelectron spectroscopy. The size of the nanoparticles is below 10 nm, and they are found to fall under the face-centered cubic system. The nanoparticles are coated with the β-cyclodextrin and folate co-tethered polyethylene glycol. Vibrating sample magnetometry reveals the soft ferromagnetic nature of the nanoparticles with a saturation magnetization value of 28.11 emu g−1 for the coated nanoparticles. The polymer on the nanoparticles allows the loading of the drug feasible, and the encapsulation efficiency is ∼93%. The in vitro release of the drug is monitored and it is observed that the release occurs over 130 h. The cytotoxicity of the free- and camptothecin-loaded manganese-ferrite nanocarrier on breast cancer cell lines is investigated. The IC50 value of the drug-loaded nanocarrier is 2.22 µg mL−1 which is significantly lower than that of the free drug. The drug-encapsulated nanocarrier releases the cargo slowly and continuously and shows increased efficacy, which represents the significance of the nanocarrier. The results present the designed nanomaterial as a suitable anticancer drug vehicle.

Graphical Abstract

Acknowledgments

We were not supported financially by any external agency to carry out this work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.