559
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Thermodynamics of host–guest interactions between methylpyridinium salts and phosphonate cavitands

, , , , &
Pages 768-775 | Received 18 May 2010, Accepted 24 Jun 2010, Published online: 24 Aug 2010
 

Abstract

In this work, the properties of complexation of tetraphosphonate cavitands towards methylpyridinium guests were investigated via isothermal titration calorimetry (ITC). For this purpose, Tiiii[C3H7, CH3, Ph], Tiiii[C3H7, H, Ph], TSiiii[C3H7, H, Ph] hosts and three different methylpyridinium guests were synthesised. The role of the following parameters in the host–guest complexation was investigated: (i) solvation, (ii) nature of the guest counterion, (iii) presence of substituents in the apical positions of the receptor, and (iv) P = O versus P = S bridging units. The results showed that (i) switching from dichloroethane to methanol leads to a decrease of the association constant due to the competitive nature of the solvent, (ii) the guest counterion does not affect the thermodynamics of the process, (iii) the apical methyl groups enhance the binding affinity of the receptor and (iv) the comparison between phosphonate and thiophosphonate hosts clearly demonstrates that cation–dipole interactions are necessary for binding.

Acknowledgement

We thank the German–Italian exchange Program (Vigoni Program) for financial support.

Notes

Dedicated to the memory of Dmitry Rudkevich.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 551.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.