167
Views
15
CrossRef citations to date
0
Altmetric
Article

Influence of amidoammonium calix[4]resorcinarenes on methyl orange protolytic equilibrium: supramolecular indicator systems

, , , , &
Pages 831-841 | Received 29 Mar 2013, Accepted 22 May 2013, Published online: 01 Jul 2013
 

Abstract

Here, we report on the study of cationic amidoammonium calix[4]resorcinarenes 15 of various lipophilicity capable of binding acid–base indicator methyl orange (MO). We identified the contributions of macrocycle aggregation and conformational mobility in the binding of MO. The effective pKa values of bound MO systematically decrease as the size and the packing density of the aggregates increase with an increase in calixresorcinarene lipophilicity. Consideration of a series of macrocycles clearly shows that large aggregates form most stable complexes, binding guests not on individual level but as aggregates. It was found that the most stable MO complex with 5 is formed due to electrostatic binding with ammonium groups of the macrocycle and incapsulation of MO in a hydrophobic layer of the aggregates. We have shown that competitive binding of MO and cationic surfactants by aggregates of 5 is suitable for visual/spectrophotometric detection of colourless anionic substrates.

Acknowledgements

This work was supported by Russian Foundation of Basic Research (grant RFBR 13-03-00147-a) and by Program 6 of the Division of Chemistry and Material Science of Russian Academy of Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 551.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.