196
Views
7
CrossRef citations to date
0
Altmetric
Journal of Drug Targeting Lifetime Achievement Award 2017

HPMA copolymer–phospholipase C and dextrin–phospholipase A2 as model triggers for polymer enzyme liposome therapy (PELT)

, , &
Pages 818-828 | Received 02 Apr 2017, Accepted 19 Jul 2017, Published online: 10 Aug 2017
 

Abstract

‘Polymer Enzyme Liposome Therapy’ (PELT) is a two-step anticancer approach in which a liposomal drug and polymer-phospholipase conjugate are administered sequentially to target the tumour interstitium by the enhanced permeability and retention effect, and trigger rapid, local, drug release. To date, however, the concept has only been described theoretically. We synthesised two polymer conjugates of phospholipase C (PLC) and A2 (PLA2) and evaluated their ability to trigger anthracycline release from the clinically used liposomes, Caelyx® and DaunoXome®. N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer–PLC and a dextrin-PLA2 were synthesised and their enzymatic activity characterised. Doxorubicin release from polyethyleneglycol-coated (PEGylated) Caelyx® was relatively slow (<20%, 60 min), whereas daunomycin was rapidly released from non-PEGylated DaunoXome® (∼87%) by both enzymes. Incubation with dextrin–PLA2 triggered significantly less daunomycin release than HPMA copolymer-PLC, but when dextrin-PLA2 was pre-incubated with α-amylase, the rate of daunomycin release increased. DaunoXome®’s diameter increased in the presence of PLA2, while Caelyx®’s diameter was unaffected by free or conjugated PLA2. Dextrin–PLA2 potentiated the cytotoxicity of DaunoXome® to MCF-7 cells to a greater extent than free PLA2, while combining dextrin–PLA2 with Caelyx® resulted in antagonism, even in the presence of α-amylase, presumably due to steric hindrance by PEG. Our findings suggest that in vivo studies to evaluate PELT combinations should be further evaluated.

Acknowledgements

E. L. F. and R. S. –F. would like to express their sincere gratitude to Professor Ruth Duncan for initiating these studies and for continued fruitful discussions. The Welsh School of Pharmacy and the Centre for Polymer Therapeutics are acknowledged for their support of ELF's PhD research.    The authors thank Richard Titball, Porton Down for helpful discussions and providing the PLC.

Disclosure statement

The authors report no conflicts of interest.

Additional information

Funding

R. S. –F. was partially supported by Vectura Ltd. EPSRC Platform grant no. EP/C 013220/1 is also acknowledged for support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.