278
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Possible role of DPP4 inhibitors to promote hippocampal neurogenesis in Alzheimer’s disease

, &
Pages 670-675 | Received 24 Oct 2017, Accepted 25 Jan 2018, Published online: 02 Mar 2018
 

Abstract

As well-known to the scientific community, Alzheimer’s disease (AD) is an irreversible neurodegenerative disease that ends up with impairment of memory and cognition. Patient quality of life can be enhanced by targeting neurogenesis as a therapeutic paradigm. Preserving functional activity of SDF-1α and GLP-1 by DPPIV inhibition will enhance the homing of stem cells and modulate cell signalling pathways. The non-invasive approach presented in this article is a major advantage for managing AD, as regular/conventional stem-cell therapy necessarily relies on the application of regenerative stem cells exogenously. Using DPP-4 inhibitors to achieve the SDF-1α/CXCR4 axis stabilisation and augmenting GLP-1 levels, will enhance the homing/recruitment of brain resident and non-resident circulating stem cells/progenitor cells towards the sites of lesion to increase synaptic plasticity, a promising approach and also a novel one as well.

Disclosure statement

There is no conflict of interest among the authors for publication.

Additional information

Funding

The present study is funded by Department of AYUSH (EMR Scheme), Government of India, New Delhi under Grant number [Z0.28015/89/2014-HPC (EMR) AYUSH – A].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.