821
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Microneedles containing cross-linked hyaluronic acid particulates for control of degradation and swelling behaviour after administration into skin

, &
Pages 884-894 | Received 23 Oct 2017, Accepted 29 Jan 2018, Published online: 15 Feb 2018
 

Abstract

Microneedles (MN) containing cross-linked hyaluronic acid (X-linked HA) particulates were prepared to control the degradation and swelling behaviour after transdermal drug delivery. The X-linked HA particulates were prepared by cross-linking HA chains and then passing the particulates through a sieve. Then, microneedles were prepared by micromolding method. The rheological properties of X-linked HA were studied. The penetration success rate, mechanical failure and dissolution rate of microneedles containing only hyaluronic acid (HA MN) and microneedles containing X-linked HA were compared. The delivery of fluorescein into the skin with X-linked HA MN was also observed using a confocal microscope. The size of the pulverised particulates in water ranged between 29 and 82 μm in diameter. The HA MN and X-linked HA MN were 270 μm in length. X-linked HA MN with fluorescein was inserted to a depth of 90% of the microneedle length successfully. There was no decrease in the penetration success rate for MN with up to 20% content of X-linked HA particulates. X-linked HA MN with up to 20% of particulate content did not change the dissolution time. Delay in degradation of HA, sustained drug release, and swelling behaviour of the skin layer can be obtained by X-linked HA MN.

Disclosure statement

Authors declare that they have no conflict of interest.

Additional information

Funding

This research was supported by Industrial Strategic Technology Development Program (10067809, development of vaccine formulation and patient-convenient vaccine microneedle) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea) and Gyeonggi Technology Development Program (D141408) funded by Gyeonggi Province.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.