184
Views
9
CrossRef citations to date
0
Altmetric
Original Article

A multifunctional nanoparticle constructed with a detachable albumin outer shell and a redox-sensitive inner core for efficient siRNA delivery to hepatocellular carcinoma cells

, , , &
Pages 941-954 | Received 06 Jan 2018, Accepted 19 Mar 2018, Published online: 03 Apr 2018
 

Abstract

Successful delivery of small interfering RNA (siRNA) into the cytoplasm of target cells relies on biocompatible and efficient vectors. In this study, a novel multifunctional core/shell nanoparticle [CS-SS-9R/BSA-c(RGDyK)] was developed to effectively deliver siVEGF to hepatocellular carcinoma cells (Bel-7402 cells). To improve the gene payload and transfection efficiency, a positively charged inner core (CS-SS-9R) was constructed by grafting nona-arginine (9R) onto chitosan (CS) using disulphide bonds. The negatively charged outer shell [BSA-c(RGDyK)] assembled on the surface of the inner core by electrostatic forces that shielded high cationic charges and provided improved targeting. The protein outer shell gradually detached from the inner core in the acidic lysosomal environment, leaving the cationic inner core exposed in order to escape from lysosomes. The nanoparticles were capable of delivering siVEGF into Bel-7402 cells via integrin receptor-mediated endocytosis. Successful lysosomal escape of the inner core and the rapid release of siVEGF into the cytoplasm resulted in a 78.9% decrease in VEGF expression and 81.2% inhibition of tumour cell proliferation. In conclusion, this nanoparticle is responsive to the intracellular environment and accurately delivered siRNA into the cytoplasm, providing a safe and highly efficient gene delivery strategy for cancer therapy.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Natural Science Research Project of Universities in Jiangsu Province of China [15KJD350002] and the Science and Technology Projects of Nantong [MS12015064].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.