234
Views
12
CrossRef citations to date
0
Altmetric
Original Article

siRNAs targeting multidrug transporter genes sensitise breast tumour to doxorubicin in a syngeneic mouse model

&
Pages 325-337 | Received 02 Jun 2018, Accepted 14 Sep 2018, Published online: 11 Feb 2019
 

Abstract

Chemotherapy, the commonly favoured approach to treat cancer is frequently associated with treatment failure and recurrence of disease as a result of development of multidrug resistance (MDR) with concomitant over-expression of drug efflux proteins on cancer cells. One of the most widely used drugs, doxorubicin (Dox) is a substrate of three different ATP-binding cassette (ABC) transporters, namely, ABCB1, ABCG2 and ABCC1, predominantly contributing to MDR phenotype in cancer. To silence these transporter-coding genes and thus enhance the therapeutic efficacy of Dox, pH-sensitive carbonate apatite (CA) nanoparticles (NPs) were employed as a carrier system to co-deliver siRNAs against these genes and Dox in breast cancer cells and in a syngeneic breast cancer mouse model. siRNAs and Dox were complexed with NPs by incubation at 37 °C and used to treat cancer cell lines to check cell viability and caspase-mediated signal. 4T1 cells-induced breast cancer mouse model was used for treatment with the complex to confirm their action in tumour regression. Smaller (∼200 nm) and less polydisperse NPs that were taken up more effectively by tumour tissue could enhance Dox chemosensitivity, significantly reducing the tumour size in a very low dose of Dox (0.34 mg/kg), in contrast to the limited effect observed in breast cancer cell lines. The study thus proposes that simultaneous delivery of siRNAs against transporter genes and Dox with the help of CA NPs could be a potential therapeutic intervention in effectively treating MDR breast cancer.

Disclosure statement

All authors read and approved the final manuscript with no conflict of interest.

Additional information

Funding

The work was supported by a research grant (FRGS/2/2013/SG05/MUSM/02/2) of the Ministry of Higher Education.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.