198
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

In vitro and in vivo characteristics of doxorubicin-loaded cyclodextrine-based polyester modified gadolinium oxide nanoparticles: a versatile targeted theranostic system for tumour chemotherapy and molecular resonance imaging

, , , , &
Pages 533-546 | Received 20 Jun 2019, Accepted 08 Dec 2019, Published online: 16 Dec 2019
 

Abstract

β-Cyclodextrine-based polyester was coated on the surface of gadolinium oxide nanoparticles (NPs) and then functionalised with folic acid to produce an efficient pH-sensitive targeted theranostic system (Gd2O3@PCD-FA) for doxorubicin delivery and magnetic resonance imaging (MRI). Gd2O3@PCD-FA was fully characterised by FTIR, vibrating sample magnetometer, TGA, XRD, SEM and TEM analyses. The dissolution profile of DOX showed a pH sensitive release. No significant toxicity was observed for the targeted NPs (Gd2O3@PCD-FA) and DOX-loaded NPs inhibiting M109 cells viability more efficiently than free DOX. Moreover, the negligible hemolytic activity of the targeted NPs showed their appropriate hemocompatibility. The preferential uptake was observed for the developed Gd2O3@PCD-FA-DOX NPs in comparison with Dotarem using T1- and T2-weighted MRI in the presence of folate receptor-positive and folate receptor-negative cancer cells (M109 and 4T1, respectively). Furthermore, in vivo studies revealed that Gd2O3@PCD-FA-DOX not only exhibited considerably relaxivity performance as a contrast agent for MRI, but also improved in vivo anti-tumour efficacy of the system. The results suggest that Gd2O3@PCD-FA-DOX improves its therapeutic efficacy in the treatment of solid tumours and also reduces the adverse effects, so it could be proposed as a promising drug delivery system for chemotherapy and molecular imaging diagnosis in MRI.

Disclosure statement

The authors report no conflict of interest.

Additional information

Funding

This work was supported in part by the Research Chancellor of Tehran University of Medical Sciences and Health Services (Grant no. 94-03-30-30035), Tehran, Iran.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.