181
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dual functional liposomes carrying antioxidants against tau hyperphosphorylation and apoptosis of neurons

, &
Pages 949-960 | Received 16 Oct 2019, Accepted 24 Apr 2020, Published online: 12 May 2020
 

Abstract

Quercetin (QU) and rosmarinic acid (RA) were loaded in phosphatidic acid-liposomes (QU/RA-PA-liposomes) with surface apolipoprotein E (ApoE) using a process of thin-film hydration, followed by covalent crosslinking to activate biological pathways for penetrating the blood–brain barrier (BBB) and redeeming the neuronal apoptosis from attack of β-amyloid 1-42 (Aβ1-42) and neurofibrillary tangles. The conjugation of liposomes with PA improved the activity of QU and RA against neurotoxicity of Aβ1-42. The fluorescent images of brain capillaries revealed that surface modification with ApoE improved the permeation ability of QU/RA-PA-ApoE-liposomes across the BBB. In addition, the highest therapeutic efficacy was obtained in the case of QU/RA-PA-ApoE-liposomes, compared to other QU/RA formulations studied using in vivo1-42-insulted rats mimicking Alzheimer’s disease (AD). The cellular and molecular evidence from AD rats included the decrease in Aβ1-42 plaque formation and interleukin-6 secretion, increase in the neuronal count in Nissl staining, and reduction in the expression of phosphorylated extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, p38 kinase and tau protein at serine 202 as well as caspase-3. The use of PA-ApoE-liposomes as a dual targeting formulation enhances the QU and RA ability to infiltrate the BBB, docks Aβ1-42 plaques and can be a potent approach to rescue degenerated neurons from AD.

Disclosure statement

The authors report no declarations of interest.

Supporting information

Details of staining against α-smooth muscle, LDLR, ZO-1, p-JNK, p-ERK1/2, p-p38, caspase-3, live/dead cells, Aβ1-42 plaque and Nissl body.

Additional information

Funding

This work is supported by Ministry of Science and Technology of the Republic of China with the grant number MOST 103-2221-E-194-043-MY3 and MOST 106-2811-E-194-002.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.