114
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Polypod-like structured guanine-rich oligonucleotide aptamer as a selective and cytotoxic nanostructured DNA to cancer cells

, , , , , & show all
Pages 217-224 | Received 15 Jun 2020, Accepted 26 Sep 2020, Published online: 08 Oct 2020
 

Abstract

Guanine-rich oligonucleotide (GRO) can be developed as an effective anticancer agent owing to its high selectivity, affinity and antiproliferative activity in cancer cells. In this study, to increase the potency of GRO29A, a 29-mer GRO aptamer against nucleolin, an overexpressed protein in cancer cells, GRO29A was incorporated into three or six pods of polypod-like structured DNA (polypodna), tripodna or hexapodna, respectively. The polypod-like structured GROs, tri-G3, consisting of one tripodna and three GRO29A, or hexa-G1, hexa-G3 or hexa-G6, each of which comprises one hexapodna and one, three or six GRO29A, respectively, were designed. Tri-G3, hexa-G1 and hexa-G3 were prepared in high yield, except for hexa-G6. Polypod-like structured GROs had quadruplex structures under physiological salt conditions, and degraded at a slower rate in buffer containing serum. Cellular interaction experiments using fluorescently labelled DNA samples showed that the uptake of hexa-G3 by nucleolin-positive MCF-7 cells was more than 2-fold higher than GRO29A, and the interaction was increasingly dependent on the number of GRO29A in the structures. Hexa-G3 inhibited the proliferation of MCF-7 cells in more than 40%, but not of CHO cells. These results indicate that polypod-like structured GROs are useful DNA aptamers with high selectivity and cytotoxicity against nucleolin-positive cancer cells.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by JSPS KAKENHI (grant number 26860021 and 18K15294) from the Japan Society for the Promotion of Science (JSPS).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.