241
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Biomimetic Ca2+ nanogenerator based on ions interference strategy for tumour-specific therapy

, , , , , , , , , & show all
Pages 1094-1101 | Received 07 Nov 2020, Accepted 15 Apr 2021, Published online: 03 May 2021
 

Abstract

Intracellular Ca2+ ions as second messenger played key role in cell behaviour, which was often overlooked in traditional antitumor treatment. Disrupting Ca2+ ion homeostasis by Ca2+ overload might switch ions signal from ‘regulating’ to ‘destroying’. Inspired by this, a biomimetic Ca2+ nanogenerator was constructed. Briefly, the curcumin (CUR) was loaded into mesoporous calcium carbonate nanoparticles (MCC NPs), and then coated with platelet (PLT) membrane. Upon reaching tumour cells by PLT membrane-mediated tumour targeting effect, PLT@MCC/CUR would instantaneously decompose in acidic lysosomes, concurrently accompanying with Ca2+ generation and CUR release. The CUR could further facilitate Ca2+ release from endoplasmic reticulum (ER) and inhibit Ca2+ efflux, aggravating Ca2+ overload to disrupt mitochondrial Ca2+ homeostasis for mitochondria apoptosis signalling pathway activation. Interestingly, such effect was ineffective in normal cells, realising the tumour-specific therapeutic therapy. Based on ions interference strategy, PLT@MCC/CUR herein offered synergistic combination of Ca2+ overload therapy and chemotherapy, which would pave the way towards more effective nanotherapeutics.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work was financially supported by the National Natural Science Foundation of China (81901878, 81873188), China Postdoctoral Science Foundation (2020T130611, 2019M662553) and Key Scientific Research Projects Plan of Henan Higher Education Institutions (20A350011).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.