47
Views
1
CrossRef citations to date
0
Altmetric
Abstracts

Density-contrast instabilities in finite element modelling of slow viscous flow

&
Pages 121-126 | Received 19 Jan 2007, Published online: 25 Jul 2007
 

Abstract

Finite element methods are often used to model Earth processes involving slow viscous or viscoelastic flow. Inertial terms of the Navier-Stokes equations are neglected in very slow flows, so timestep size is not limited by the Courant instability. However, where there is advection of density contrasts in a gravitational field, over-advection can lead to numerically induced flow oscillations. We derive analytic results for the maximum stable timestep size in two cases: a free surface over a fluid of uniform density, and a free surface kept level by sedimentation/erosion, but with a density gradient in the underlying medium. Using parameters appropriate to the Earth's crust we show that the density-contrast instability occurs for timesteps larger than 3000 years for the constant-density case. For a fluid with a density gradient of 10 kg/mper km the solution is stable for timesteps up to about 200,000 years if full erosion/sedimentation is implemented.

Notes

[email protected], Tel: 416 978 3231

Additional information

Notes on contributors

R. C. Bailey

† † [email protected], Tel: 416 978 3231

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 473.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.