434
Views
23
CrossRef citations to date
0
Altmetric
Articles

Alternative ways of coupling particle behaviour with fluid dynamics in mineral processing

&
Pages 109-118 | Received 13 Aug 2008, Accepted 13 Jan 2009, Published online: 16 Apr 2009
 

Abstract

Research in particulate multiphase hydrodynamics is especially important in mineral processing applications that involve complicated physical processes and complex geometry. Numerous numerical methods have been developed to address the coupling physics. However, there is no single solution for all applications, especially after considering computational costs and model accuracy.

This article presents alternative numerical coupling approaches to capture the physics of interest. A one-way coupling of conventional grid-based CFD with discrete element method (DEM) is applied to simulations of slurry pumps. FLUENT is used to compute the fluid field in the pump, which is imported into our DEM code. The DEM is used to capture dynamics of the detailed behaviour of individual solid particles, including inter-particle collisions and particle impacts into structure (boundaries).

A Lagrangian–Lagrangian multiphase model is proposed for simulation of dense particulate flows in a grinding mill. This work is motivated by developing totally meshfree approaches for particulate flows due to complex and rotating geometry in many pieces of equipment in the mining industry. The particle-based multiphase model is an integration of DEM with smooth particle dynamics (SPH). SPH is extended to the multiphase version where an extra variable, volume fraction, is introduced into the governing equation in order to account for interpenetrating multiphase fluid dynamics. The interaction between the solid particles and the fluid phase consists of three contributions: volume fraction, pressure and drag force. The time stepping scheme can be either explicit Euler for speed-up or lower order Runge–Kutta for more accuracy, and the time step is controlled by the Courant condition. The model is applied to a preliminary study of a semi-autogenous grinding mill.

Acknowledgements

The authors' acknowledgements and thanks go to High Fidelity Simulation team of Metso Minerals Optimization Services at Colorado Springs, especially to Dr. Xiangjun Qiu and Dr. Alex Potapov.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 473.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.