96
Views
2
CrossRef citations to date
0
Altmetric
Articles

Attenuating the large-scale turbulent oscillations sustained by shallow cavities with a perforated lid

Pages 519-531 | Received 29 Dec 2008, Accepted 15 Jun 2009, Published online: 14 Sep 2009
 

Abstract

Marine engineers face a challenging problem when designing recessed cavities that require perforated covers. Under certain geometric and kinematic conditions, the separated shear layers directly above the perforations support the spatial maturity of periodic large-scale structures. Intermittent spoilers attenuate the structure's maturity by interrupting communication between the shear layer and the adjacent inner cavity, but this success fails during transient flow conditions. In the far-field, the corresponding noise pulse is easily detectable. Evolutionary growth of the streamwise structures originates from small Kelvin–Helmholtz (K–H) waves within the shear layers just after separation and are sustained by a pressure feedback mechanism that occurs within the cavity itself. Herein, the resolved physics from large-eddy simulations along with the previous experimental evidence show analogous fundamental characteristics between the open and perforated covered cavities regardless of whether upstream separation is laminar or turbulent. These quantitative analogies are equally similar for lids perforated by staggered circular holes or slots that are tightly spaced in the streamwise direction. An alternative measure permits formation of the K–H waves, then successfully mitigates their streamwise growth by elongating the distance between perforations. This latter corrective measure reverses the mean resultant lid force to the preferred outboard direction.

Acknowledgements

The author gratefully acknowledges the support of the Office of Naval Research (Dr. Ronald D. Joslin, Program Officer) Contract No. N0001408AF0002 and the In-House Independent Research Program (Mr. Richard Phillips, Coordinator) at the Naval Undersea Warfare Center Division Newport.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 473.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.