342
Views
12
CrossRef citations to date
0
Altmetric
Articles

Application of point implicit Runge–Kutta methods to inviscid and laminar flow problems using AUSM and AUSM+ upwinding

&
Pages 255-269 | Received 24 Jan 2011, Accepted 10 May 2011, Published online: 28 Jul 2011
 

Abstract

Explicit Runge–Kutta methods preconditioned by a pointwise matrix valued preconditioner can significantly improve the convergence rate to approximate steady state solutions of laminar flows. This has been shown for central discretisation schemes and Roe upwinding. Since the first-order approximation to the inviscid flux assuming constant weighting of the dissipative terms is given by the absolute value of the Roe matrix, the construction of the preconditioner is rather simple compared to other upwind techniques. However, in this article we show that similar improvements in the convergence rates can also be obtained for the AUSM+ scheme. Following the ideas for the central and Roe schemes, the preconditioner is obtained by a first-order approximation to the derivative of the convective flux. Viscous terms are included into the preconditioner considering a thin shear layer approximation. A complete derivation of the derivative terms is shown. In numerical examples, we demonstrate the improved convergence rates when compared with a standard explicit Runge–Kutta method accelerated with local time stepping.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 473.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.