713
Views
7
CrossRef citations to date
0
Altmetric
High-Dimensional and Multivariate Methods

Uncertainty Quantification for Modern High-Dimensional Regression via Scalable Bayesian Methods

, , &
Pages 174-184 | Received 01 Jul 2017, Published online: 07 Sep 2018
 

ABSTRACT

Tremendous progress has been made in the last two decades in the area of high-dimensional regression, especially in the “large p, small n” setting. Such sample starved settings inevitably lead to models which are potentially very unstable and hence quite unreliable. To this end, Bayesian shrinkage methods have generated a lot of recent interest in the modern high-dimensional regression and model selection context. Such methods span the wide spectrum of modern regression approaches and include among others, spike-and-slab priors, the Bayesian lasso, ridge regression, and global-local shrinkage priors such as the Horseshoe prior and the Dirichlet–Laplace prior. These methods naturally facilitate tractable uncertainty quantification and have thus been used extensively across diverse applications. A common unifying feature of these models is that the corresponding priors on the regression coefficients can be expressed as a scale mixture of normals. This property has been leveraged extensively to develop various three-step Gibbs samplers to explore the corresponding intractable posteriors. The convergence of such samplers however is very slow in high dimensions settings, making them disconnected to the very setting that they are intended to work in. To address this challenge, we propose a comprehensive and unifying framework to draw from the same family of posteriors via a class of tractable and scalable two-step blocked Gibbs samplers. We demonstrate that our proposed class of two-step blocked samplers exhibits vastly superior convergence behavior compared to the original three-step sampler in high-dimensional regimes on simulated data as well as data from a variety of applications including gene expression data, infrared spectroscopy data, and socio-economic/law enforcement data. We also provide a detailed theoretical underpinning to the new method by deriving explicit upper bounds for the (geometric) rate of convergence, and by proving that the proposed two-step sampler has superior spectral properties. Supplementary material for this article is available online.

Additional information

Funding

Bala Rajaratnam and Doug Sparks are supported in part by the U.S. National Science Foundation under grants DMS-CMG-1025465, AGS-1003823, DMS-1106642, and DMS-CAREER-1352656, and by the US Air Force Office of Scientific Research grant award FA9550-13-1-0043. Kshitij Khare is supported in part by NSF grant DMS-15-11945.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 180.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.