264
Views
0
CrossRef citations to date
0
Altmetric
Time Series and Longitudinal Data Analysis

Modeling Longitudinal Data Using Matrix Completion

ORCID Icon &
Pages 551-566 | Received 29 Apr 2022, Accepted 25 Aug 2023, Published online: 15 Nov 2023
 

Abstract

In clinical practice and biomedical research, measurements are often collected sparsely and irregularly in time, while the data acquisition is expensive and inconvenient. Examples include measurements of spine bone mineral density, cancer growth through mammography or biopsy, a progression of defective vision, or assessment of gait in patients with neurological disorders. Practitioners often need to infer the progression of diseases from such sparse observations. A classical tool for analyzing such data is a mixed-effect model where time is treated as both a fixed effect (population progression curve) and a random effect (individual variability). Alternatively, researchers use Gaussian processes or functional data analysis, assuming that observations are drawn from a certain distribution of processes. While these models are flexible, they rely on probabilistic assumptions, require very careful implementation, and tend to be slow in practice. In this study, we propose an alternative elementary framework for analyzing longitudinal data motivated by matrix completion. Our method yields estimates of progression curves by iterative application of the Singular Value Decomposition. Our framework covers multivariate longitudinal data, and regression and can be easily extended to other settings. As it relies on existing tools for matrix algebra, it is efficient and easy to implement. We apply our methods to understand trends of progression of motor impairment in children with Cerebral Palsy. Our model approximates individual progression curves and explains 30% of the variability. Low-rank representation of progression trends enables identification of different progression trends in subtypes of Cerebral Palsy.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

Łukasz Kidziński was supported by the Mobilize Center grant U54 EB020405 from the National Institute of Health. Trevor J. Hastie was partially supported by grants DMS-2013736 And IIS, 1837931 from the National Science Foundation, and grant 5R01 EB, 001988-21 from the National Institutes of Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 180.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.