75
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Molecular structural characteristics governing biocatalytic chlorination of PAHs by Chloroperoxidase from Caldariomyces fumago

Pages 159-167 | Received 24 Oct 2003, Accepted 28 Feb 2004, Published online: 01 Feb 2007
 

Abstract

Based on some fundamental quantum chemical descriptors computed by PM3 Hamiltonian, a quantitative structure-property relationship (QSPR) for specific activity of 17 polycyclic aromatic hydrocarbons (PAHs) of biocatalytic chlorination by chloroperoxidase (CPO) from Caldariomyces fumago was developed using partial least squares (PLS) regression. The model can be used to estimate biocatalytic chlorination reaction rates of PAHs. The main factors affecting specific activity of PAHs of biocatalytic chlorination by CPO from Caldariomyces fumago are absolute hardness, dipole moment, absolute electronegativity, and molecular bulkness of the PAH molecules. The biocatalytic chlorination reaction rates of PAHs with large values of absolute hardness, absolute electronegativity, and molecular bulkness tend to be slow. Increasing dipole moment of PAHs leads to increase the specific activity.

Acknowledgements

The research was supported by the National Natural Science Foundation of China (No. 50238020) and China Postdoctoral Science Foundation (No. 2003-03).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.