158
Views
6
CrossRef citations to date
0
Altmetric
Articles

Quantitative structure and bioactivity relationship study on HCV NS5B polymerase inhibitors

, , , &
Pages 1-15 | Received 15 Dec 2012, Accepted 02 Apr 2013, Published online: 28 Nov 2013
 

Abstract

Several QSAR (quantitative structure–activity relationship) models for predicting the inhibitory activity of 333 hepatitis C virus (HCV) NS5B polymerase inhibitors were developed. All the inhibitors are HCV polymerase non-nucleoside analogue inhibitors (NNIs) fitting into the pocket of the NNI III binding site. For each molecule, global descriptors and 2D property autocorrelation descriptors were calculated from the program ADRIANA.Code. Pearson correlation analysis was used to select the significant descriptors for building models. The whole dataset was split into a training set and a test set randomly or using a Kohonen’s self-organizing map (SOM). Then, the inhibitory activity of 333 HCV NS5B polymerase inhibitors was predicted using multilinear regression (MLR) analysis and support vector machine (SVM) method, respectively. For the test set of the best model (Model 2B), correlation coefficient of 0.91 was achieved. Some molecular descriptors, such as molecular complexity (Complexity), the number of hydrogen bonding donors (HDon) and the solubility of the molecule in water (log S) were found to be very important factors which determined the bioactivity of the HCV NS5B inhibitors. Some other molecular properties such as electrostatic and charge properties also played important roles in the interaction between the ligand and the protein. The selected molecular descriptors were further confirmed by analysing the interaction between two representative inhibitors and the polymerase in their crystal structures.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20975011 and 81273631), International S&T Cooperation Project (S2012ZR0272), and “Chemical Grid Project” of Beijing University of Chemical Technology. We thank Molecular Networks GmbH, Erlangen, Germany for making the programs ADRIANA.Code, Corina, and SONNIA available for our scientific work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.