167
Views
5
CrossRef citations to date
0
Altmetric
Articles

Docking-based CoMFA and CoMSIA study of azaindole carboxylic acid derivatives as promising HIV-1 integrase inhibitors

, , , &
Pages 819-839 | Received 31 Jan 2013, Accepted 16 Apr 2013, Published online: 29 Aug 2013
 

Abstract

Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant Nos. 20872082, 21072115 and 21272140).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.