467
Views
27
CrossRef citations to date
0
Altmetric
Articles

QSAR study of the acute toxicity to fathead minnow based on a large dataset

, &
Pages 147-164 | Received 24 Nov 2015, Accepted 28 Dec 2015, Published online: 25 Feb 2016
 

Abstract

Acute fathead minnow toxicity is an important basis of hazard and risk assessment for compounds in the aquatic environment. In this paper, a large dataset consisting of 963 organic compounds with acute toxicity towards fathead minnow was studied with a QSAR approach. All molecular structures of compounds were optimized by the hybrid density functional theory method. Dragon molecular descriptors and log Kow were selected to describe molecular information. Genetic algorithm and multiple linear regression analysis were combined to develop models. A global prediction model for compounds without known mode of action and two local models for organic compounds that exhibit narcosis toxicity and excess toxicity were developed, respectively. For all developed models, internal validations were performed by cross-validation and external validations were implemented by the setting of validation set. In addition, applicability domains of models were evaluated using a leverage method and outliers were listed and checked using toxicological knowledge.

Acknowledgements

This work is supported by National High Technology Research and Development Program 863 Project (2012AA06A301) and the Research Fund for the Doctoral Program of Higher Education of China (project No. 20130131110058).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.