274
Views
22
CrossRef citations to date
0
Altmetric
Articles

Scoring multiple features to predict drug disease associations using information fusion and aggregation

, &
Pages 609-628 | Received 14 May 2016, Accepted 30 Jun 2016, Published online: 25 Jul 2016
 

Abstract

Prediction of drug–disease associations is one of the current fields in drug repositioning that has turned into a challenging topic in pharmaceutical science. Several available computational methods use network-based and machine learning approaches to reposition old drugs for new indications. However, they often ignore features of drugs and diseases as well as the priority and importance of each feature, relation, or interactions between features and the degree of uncertainty. When predicting unknown drug–disease interactions there are diverse data sources and multiple features available that can provide more accurate and reliable results. This information can be collectively mined using data fusion methods and aggregation operators. Therefore, we can use the feature fusion method to make high-level features. We have proposed a computational method named scored mean kernel fusion (SMKF), which uses a new method to score the average aggregation operator called scored mean. To predict novel drug indications, this method systematically combines multiple features related to drugs or diseases at two levels: the drug–drug level and the drug–disease level. The purpose of this study was to investigate the effect of drug and disease features as well as data fusion to predict drug–disease interactions. The method was validated against a well-established drug–disease gold-standard dataset. When compared with the available methods, our proposed method outperformed them and competed well in performance with area under cover (AUC) of 0.91, F-measure of 84.9% and Matthews correlation coefficient of 70.31%.

Acknowledgements

The authors gratefully acknowledge the collaboration of Dr Alireza Vazifedoost.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.