232
Views
7
CrossRef citations to date
0
Altmetric
Special Issue: 9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMTPI-2017) - Part 2. Guest Editors: A.K. Saxena and M. Saxena

Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification modelFootnote$

, , &
Pages 875-888 | Received 25 Oct 2017, Accepted 01 Nov 2017, Published online: 30 Nov 2017
 

Abstract

Computational approaches have been suggested as an informative tool for risk assessment of nanomaterials. Nano (quantitative) structure-activity relationship, nano-(Q)SAR, models have been developed to predict toxicity of metal oxide (MOx) nanoparticles (NPs); however, the packing structure and cluster of nanoparticle have been included for the descriptor calculation in only two studies. This study proposed spherical cluster and hydroxyl metal coordination complex to calculate descriptors for development of nanoparticle cytotoxicity classification model. The model cluster was generated from metal (M) or MOx crystal structure to calculate physicochemical properties of M/MOx NPs and the hydroxyl metal coordination complex was used to calculate the properties of the metal cation in an aqueous environment. Data were collected for 2 M and 19 MOx NPs in human bronchial epithelial cell lines and murine myeloid cell lines at 100 μg/ml after 24 hours exposure. The model was developed with scaled HOMO energy of the model cluster and polarizability of the hydroxyl metal coordination complex, as reactivity of the particles and the cations explained cause of cytotoxic action by M/MOx NPs. As the developed model achieved 90.31% accuracy, the classification model in this work can be used for virtual screening of toxic action of M/MOx NPs.

Acknowledgements

This study was supported by the research project for Environmental Risk Assessment of Manufactured Nanomaterials (KK-1604-02) funded by the Korea Institute of Toxicology (KIT, Korea) and by the Brain Korea 21 (BK21) PLUS program.

Notes

$ Presented at the 9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources, CMTPI-2017, 27–30 October 2017, Goa, India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.