134
Views
5
CrossRef citations to date
0
Altmetric
9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMTPI-2017) - Part 3. Guest Editors: A.K. Saxena and M. Saxena

Multipole models of sulphur for accurate anisotropic electrostatic interactions within force fieldsFootnote$

, , & ORCID Icon
Pages 21-42 | Received 25 Oct 2017, Accepted 14 Nov 2017, Published online: 19 Dec 2017
 

Abstract

Nowadays, as computing has become much more available, a fresh momentum has been observed in the field of re-visioning and re-parameterizing the usual tools, as well as estimating for the incorporation of new qualitative capabilities, aimed at making more accurate and reliable predictions in drug discovery processes. Inspired by the success of modelling the electrostatic part of the halogen bonding (XB) by means of the distributed multipole expansion, a study is presented which attempts to extend this approach to a tougher case of σ-hole interaction: sulphur-based chalcogen bonding. To that end, 11 anisotropic models have been derived and tested for their performance in the reproduction of reference ab initio molecular electrostatic potential. A careful examination resulted in three models which have been selected for further examination as a part of the molecular mechanics force field (GAFF). The combined force field was used to estimate inter- and intra-molecular interactions for the molecular systems, capable of differentiating the binding from the σ-hole and other directions. The anisotropic models proposed were generally able to correct the wrong predictions of the sulphur models based only on isotropic charges and, thus, are a promising direction for further development of the refined electrostatics force fields.

Notes

$ Presented at the 9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources, CMTPI-2017, 27–30 October 2017, Goa, India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.