371
Views
16
CrossRef citations to date
0
Altmetric
Articles

An evaluation of selected (Q)SARs/expert systems for predicting skin sensitisation potential

ORCID Icon, ORCID Icon & ORCID Icon
Pages 439-468 | Received 05 Feb 2018, Accepted 17 Mar 2018, Published online: 20 Apr 2018
 

Abstract

Predictive testing to characterise substances for their skin sensitisation potential has historically been based on animal models such as the Local Lymph Node Assay (LLNA) and the Guinea Pig Maximisation Test (GPMT). In recent years, EU regulations, have provided a strong incentive to develop non-animal alternatives, such as expert systems software. Here we selected three different types of expert systems: VEGA (statistical), Derek Nexus (knowledge-based) and TIMES-SS (hybrid), and evaluated their performance using two large sets of animal data: one set of 1249 substances from eChemportal and a second set of 515 substances from NICEATM. A model was considered successful at predicting skin sensitisation potential if it had at least the same balanced accuracy as the LLNA and the GPMT had in predicting the other outcomes, which ranged from 79% to 86%. We found that the highest balanced accuracy of any of the expert systems evaluated was 65% when making global predictions. For substances within the domain of TIMES-SS, however, balanced accuracies for the two datasets were found to be 79% and 82%. In those cases where a chemical was within the TIMES-SS domain, the TIMES-SS skin sensitisation hazard prediction had the same confidence as the result from LLNA or GPMT.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.