547
Views
31
CrossRef citations to date
0
Altmetric
18th International Conference on QSAR in Environmental and Health Sciences (QSAR 2018)

Modelling methods and cross-validation variants in QSAR: a multi-level analysis$

ORCID Icon, ORCID Icon & ORCID Icon
Pages 661-674 | Received 11 Jul 2018, Accepted 24 Jul 2018, Published online: 30 Aug 2018
 

ABSTRACT

Prediction performance often depends on the cross- and test validation protocols applied. Several combinations of different cross-validation variants and model-building techniques were used to reveal their complexity. Two case studies (acute toxicity data) were examined, applying five-fold cross-validation (with random, contiguous and Venetian blind forms) and leave-one-out cross-validation (CV). External test sets showed the effects and differences between the validation protocols. The models were generated with multiple linear regression (MLR), principal component regression (PCR), partial least squares (PLS) regression, artificial neural networks (ANN) and support vector machines (SVM). The comparisons were made by the sum of ranking differences (SRD) and factorial analysis of variance (ANOVA). The largest bias and variance could be assigned to the MLR method and contiguous block cross-validation. SRD can provide a unique and unambiguous ranking of methods and CV variants. Venetian blind cross-validation is a promising tool. The generated models were also compared based on their basic performance parameters (r2 and Q2). MLR produced the largest gap, while PCR gave the smallest. Although PCR is the best validated and balanced technique, SVM always outperformed the other methods, when experimental values were the benchmark. Variable selection was advantageous, and the modelling had a larger influence than CV variants.

Acknowledgement

This work was supported by the National Research, Development and Innovation Office of Hungary (NKFIH, grants K 119269 and KH_17 125608).

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.