263
Views
9
CrossRef citations to date
0
Altmetric
Articles

Modelling peak exposure of pesticides in terrestrial and aquatic ecosystems: importance of dissolved organic carbon and vertical particle movement in soil

ORCID Icon, ORCID Icon & ORCID Icon
Pages 19-32 | Received 30 Sep 2019, Accepted 27 Oct 2019, Published online: 13 Nov 2019
 

ABSTRACT

In the present work, an existing vegetation/air/litter/soil model (SoilPlusVeg) was modified to improve organic chemical fate description in terrestrial/aquatic ecosystems accounting for horizontal and vertical particulate organic carbon (POC) transport in soil. The model was applied to simulate the fate of three pesticides (terbuthylazine, chlorpyrifos and etofenprox), characterized by increasing hydrophobicity (log KOW from about 3 to 7), in the soil compartment and more specifically, their movement towards surface and groundwater through infiltration and runoff processes. The aim was to evaluate the role of dissolved organic carbon (DOC) and POC in the soil in influencing the peak exposure of pesticides in terrestrial/aquatic ecosystems. Simulation results showed that while terbuthylazine and chlorpyrifos dominated the free water phase (CW-FREE) of soil, etofenprox was mainly present in soil porewater as POC associated chemical. This resulted in an increase of this highly hydrophobic chemical movement towards groundwater and surface water, up to a factor of 40. The present work highlighted the importance of DOC and POC as an enhancer of mobility in the water of poor or very little mobile chemicals. Further studies are necessary to evaluate the bioavailability change with time and parameterize this process in multimedia fate models.

Acknowledgements

The University of Insubria is acknowledged for the Post Doc salary of ET.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed https://doi.org/10.1080/1062936X.2019.1686715.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.