367
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Publicly available QSPR models for environmental media persistence

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 493-510 | Received 22 Apr 2020, Accepted 27 May 2020, Published online: 26 Jun 2020
 

ABSTRACT

The evaluation of persistency of chemicals in environmental media (water, soil, sediment) is included in European Regulations, in the context of the Persistence, Bioaccumulation and Toxicity (PBT) assessment. In silico predictions are valuable alternatives for compounds screening and prioritization. However, already existing prediction tools have limitations: narrow applicability domains due to their relatively small training sets, and lack of medium-specific models. A dataset of 1579 unique compounds has been collected, merging several persistence data sources annotated by, at least, one experimental dissipation half-life value for the given environmental medium. This dataset was used to train binary classification models discriminating persistent/non-persistent (P/nP) compounds based on REACH half-life thresholds on sediment, water and soil compartments. Models were built using ISIDA (In SIlico design and Data Analysis) fragment descriptors and support vector regression, random forest and naïve Bayesian machine-learning methods. All models scored satisfactory performances: sediment being the most performing one (BAext = 0.91), followed by water (BAext = 0.77) and soil (BAext = 0.76). The latter suffer from low detection of persistent (‘P’) compounds (Snext = 0.50), reflecting discrepancies in reported half-life measurements among the different data sources. Generated models and collected data are made publicly available.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2020.1776387.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.