284
Views
0
CrossRef citations to date
0
Altmetric
Research Article

QSPR modelling for investigation of different properties of aminoglycoside-derived polymers using 2D descriptors

& ORCID Icon
Pages 595-614 | Received 28 Mar 2021, Accepted 02 Jun 2021, Published online: 21 Jun 2021
 

ABSTRACT

The quantitative structure‐property relationship (QSPR) method is commonly used to predict different physicochemical characteristics of interest of chemical compounds with an objective to accelerate the process of design and development of novel chemical compounds in the biotechnology and healthcare industries. In the present report, we have employed a QSPR approach to predict the different properties of the aminoglycoside-derived polymers (i.e. polymer DNA binding and aminoglycoside-derived polymers mediated transgene expression). The final QSPR models were obtained using the partial least squares (PLS) regression approach using only specific categories of two-dimensional descriptors and subsequently evaluated considering different internationally accepted validation metrics. The proposed models are robust and non-random, demonstrating excellent predictive ability using test set compounds. We have also developed different kinds of consensus models using several validated individual models to improve the prediction quality for external set compounds. The present findings provide new insight for exploring the design of an aminoglycoside-derived polymer library based on different identified physicochemical properties as well as predict their property before their synthesis.

Acknowledgements

PMK thanks to National Institute of Pharmaceutical Education and Research Kolkata, the Ministry of Chemicals & Fertilizers, Department of Pharmaceuticals, Government of India for providing financial assistance in the form of a fellowship.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2021.1939150

Additional information

Funding

This work was supported by the Ministry of Chemicals and Fertilizers, Govt. of India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.