547
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Application of cross-validation strategies to avoid overestimation of performance of 2D-QSAR models for the prediction of aquatic toxicity of chemical mixtures

&
Pages 463-484 | Received 31 Mar 2022, Accepted 19 May 2022, Published online: 31 May 2022
 

ABSTRACT

The quantitative structure–activity relationship (QSAR) modelling of mixtures is not as simple as that for individual chemicals, and it needs additional care to avoid overestimation of the performance. In this research, we have developed a 2D-QSAR model using only 2D interpretable and reproducible descriptors to predict the aquatic toxicity of mixtures of polar and non-polar narcotic substances present in the environment. Partial least squares (PLS) regression has been used to model the response variable (log 1/EC50 against Photobacterium phosphoreum) and the structural features of 84 binary mixtures of polar and nonpolar narcotic toxicants complying with the Organization of Economic Co-operation and Development (OECD) protocols. The model was cross-validated by mixtures-out and compounds-out cross-validation to nullify the developmental bias. The reliability of prediction of the model has been judged by the Prediction Reliability Indicator (PRI) tool using a newly designed set. The new model is robust, reproducible, extremely predictive, easily interpretable, and can be used for reliable prediction of aquatic toxicity of any untested chemical mixtures within the applicability domain. We have additionally used a machine learning-based chemical read-across algorithm in this study to improve the quality of predictions for the toxicity of the mixtures with the modelled descriptors.

Acknowledgements

MC sincerely acknowledges to All India Council for Technical Education (AICTE, New Delhi) for the financial assistance in the form of the National Doctoral Fellowship (NDF). Financial assistance for SERB, New Delhi under the MATRICS scheme is thankfully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2022.2081255

Additional information

Funding

This work was supported by the All India Council for Technical Education.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.